Artificial General Intelligence: Porovnání verzí
d |
d |
||
Řádka 1: | Řádka 1: | ||
− | + | < |
Verse z 9. 2. 2025, 14:48
Artificial basic intelligence (AGI) is a type of expert system (AI) that matches or exceeds human cognitive capabilities throughout a wide variety of cognitive tasks. This contrasts with narrow AI, which is limited to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably goes beyond human cognitive abilities. AGI is considered among the definitions of strong AI.
Creating AGI is a primary objective of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research and development tasks throughout 37 countries. [4]
The timeline for achieving AGI remains a subject of continuous argument amongst researchers and professionals. Since 2023, some argue that it may be possible in years or decades; others maintain it may take a century or longer; a minority think it may never be accomplished; and another minority declares that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has actually revealed issues about the rapid development towards AGI, suggesting it could be attained quicker than lots of expect. [7]
There is debate on the exact definition of AGI and relating to whether contemporary big language models (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a common topic in sci-fi and futures studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many professionals on AI have actually specified that reducing the risk of human termination positioned by AGI ought to be an international concern. [14] [15] Others discover the advancement of AGI to be too remote to present such a risk. [16] [17]
Terminology
AGI is likewise referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or general intelligent action. [21]
Some scholastic sources schedule the term "strong AI" for computer system programs that experience life or consciousness. [a] In contrast, weak AI (or narrow AI) is able to resolve one specific issue however does not have general cognitive abilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the very same sense as people. [a]
Related principles include artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical kind of AGI that is much more typically smart than humans, [23] while the concept of transformative AI relates to AI having a big effect on society, for example, similar to the farming or commercial revolution. [24]
A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify 5 levels of AGI: emerging, qualified, expert, virtuoso, and superhuman. For example, a competent AGI is specified as an AI that outshines 50% of skilled grownups in a large range of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is similarly specified however with a threshold of 100%. They consider large language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have been proposed. Among the leading proposals is the Turing test. However, there are other popular definitions, and some scientists disagree with the more popular methods. [b]
Intelligence qualities
Researchers typically hold that intelligence is required to do all of the following: [27]
reason, usage technique, fix puzzles, and make judgments under unpredictability
represent understanding, including good sense knowledge
strategy
learn
- interact in natural language
- if necessary, incorporate these abilities in completion of any given objective
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and decision making) consider additional qualities such as creativity (the capability to form novel psychological images and principles) [28] and trademarketclassifieds.com autonomy. [29]
Computer-based systems that exhibit much of these capabilities exist (e.g. see computational imagination, automated reasoning, choice assistance system, robot, evolutionary computation, smart representative). There is debate about whether modern-day AI systems have them to an appropriate degree.
Physical characteristics
Other capabilities are considered desirable in intelligent systems, as they might affect intelligence or help in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, and so on), and
- the capability to act (e.g. relocation and control objects, modification area to explore, etc).
This includes the capability to identify and respond to hazard. [31]
Although the capability to sense (e.g. see, hear, etc) and the ability to act (e.g. move and control items, modification area to check out, and so on) can be preferable for some smart systems, [30] these physical abilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that large language designs (LLMs) may currently be or become AGI. Even from a less optimistic viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system is adequate, offered it can process input (language) from the external world in place of human senses. This analysis lines up with the understanding that AGI has actually never ever been proscribed a specific physical personification and thus does not require a capability for locomotion or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to validate human-level AGI have actually been considered, consisting of: [33] [34]
The idea of the test is that the machine has to attempt and pretend to be a guy, by addressing concerns put to it, and it will only pass if the pretence is fairly convincing. A substantial part of a jury, who must not be skilled about machines, need to be taken in by the pretence. [37]
AI-complete problems
A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would require to execute AGI, due to the fact that the solution is beyond the capabilities of a purpose-specific algorithm. [47]
There are many issues that have been conjectured to require general intelligence to resolve as well as human beings. Examples include computer vision, natural language understanding, and handling unanticipated circumstances while resolving any real-world problem. [48] Even a specific task like translation needs a device to read and write in both languages, follow the author's argument (factor), comprehend the context (understanding), and faithfully reproduce the author's initial intent (social intelligence). All of these issues require to be solved all at once in order to reach human-level device efficiency.
However, a number of these jobs can now be carried out by modern-day big language models. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on many benchmarks for checking out understanding and visual thinking. [49]
History
Classical AI
Modern AI research began in the mid-1950s. [50] The first generation of AI researchers were convinced that artificial general intelligence was possible and that it would exist in just a few decades. [51] AI leader Herbert A. Simon composed in 1965: "machines will be capable, within twenty years, of doing any work a guy can do." [52]
Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they might develop by the year 2001. AI pioneer Marvin Minsky was an expert [53] on the task of making HAL 9000 as practical as possible according to the consensus predictions of the time. He said in 1967, "Within a generation ... the issue of creating 'artificial intelligence' will considerably be solved". [54]
Several classical AI tasks, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it ended up being obvious that researchers had grossly ignored the problem of the task. Funding companies ended up being doubtful of AGI and put researchers under increasing pressure to produce helpful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "continue a table talk". [58] In response to this and the success of expert systems, both industry and federal government pumped money into the field. [56] [59] However, confidence in AI spectacularly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever fulfilled. [60] For the 2nd time in twenty years, AI scientists who anticipated the impending achievement of AGI had actually been mistaken. By the 1990s, AI scientists had a credibility for making vain pledges. They became hesitant to make predictions at all [d] and avoided mention of "human level" expert system for fear of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI accomplished commercial success and academic respectability by concentrating on specific sub-problems where AI can produce proven outcomes and business applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized extensively throughout the technology industry, and research study in this vein is greatly funded in both academic community and industry. As of 2018 [upgrade], development in this field was considered an emerging pattern, and a mature phase was expected to be reached in more than ten years. [64]
At the turn of the century, lots of mainstream AI researchers [65] hoped that strong AI could be established by combining programs that solve different sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up path to expert system will one day meet the standard top-down path majority method, all set to offer the real-world competence and the commonsense understanding that has actually been so frustratingly evasive in thinking programs. Fully intelligent makers will result when the metaphorical golden spike is driven joining the two efforts. [65]
However, even at the time, this was contested. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:
The expectation has typically been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper are valid, then this expectation is hopelessly modular and there is actually only one practical path from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer will never ever be reached by this route (or vice versa) - nor is it clear why we must even try to reach such a level, given that it appears arriving would just amount to uprooting our symbols from their intrinsic significances (therefore simply lowering ourselves to the practical equivalent of a programmable computer). [66]
Modern synthetic basic intelligence research
The term "artificial basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the capability to please goals in a large range of environments". [68] This type of AGI, defined by the ability to increase a mathematical definition of intelligence rather than exhibit human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The very first summer school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and featuring a variety of visitor speakers.
As of 2023 [upgrade], a little number of computer scientists are active in AGI research study, and numerous contribute to a series of AGI conferences. However, progressively more researchers are interested in open-ended learning, [76] [77] which is the idea of allowing AI to continuously discover and innovate like human beings do.
Feasibility
As of 2023, the development and prospective achievement of AGI remains a subject of extreme dispute within the AI community. While traditional agreement held that AGI was a distant objective, current advancements have actually led some scientists and industry figures to declare that early forms of AGI might currently exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "devices will be capable, within twenty years, of doing any work a male can do". This forecast failed to come true. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century since it would need "unforeseeable and basically unpredictable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf in between contemporary computing and human-level synthetic intelligence is as wide as the gulf in between existing area flight and useful faster-than-light spaceflight. [80]
A more difficulty is the absence of clarity in defining what intelligence requires. Does it require awareness? Must it display the capability to set goals in addition to pursue them? Is it purely a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are facilities such as preparation, thinking, and causal understanding required? Does intelligence need clearly duplicating the brain and its specific professors? Does it require emotions? [81]
Most AI scientists think strong AI can be achieved in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of achieving strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be achieved, but that the present level of development is such that a date can not precisely be predicted. [84] AI professionals' views on the feasibility of AGI wax and subside. Four surveys performed in 2012 and 2013 suggested that the typical estimate amongst experts for when they would be 50% confident AGI would show up was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the specialists, 16.5% answered with "never ever" when asked the same concern but with a 90% confidence instead. [85] [86] Further current AGI development considerations can be discovered above Tests for verifying human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong predisposition towards predicting the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They evaluated 95 predictions made in between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers published a detailed evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it might fairly be considered as an early (yet still insufficient) version of an artificial basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outshines 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a significant level of basic intelligence has actually already been achieved with frontier designs. They wrote that hesitation to this view originates from 4 main reasons: a "healthy hesitation about metrics for AGI", an "ideological commitment to alternative AI theories or strategies", a "dedication to human (or biological) exceptionalism", or a "concern about the financial ramifications of AGI". [91]
2023 also marked the introduction of large multimodal models (large language models capable of processing or creating numerous methods such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the very first of a series of models that "spend more time thinking before they react". According to Mira Murati, this ability to believe before responding represents a new, additional paradigm. It enhances design outputs by spending more computing power when producing the answer, whereas the design scaling paradigm improves outputs by increasing the model size, training data and training calculate power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the business had actually achieved AGI, stating, "In my opinion, we have actually already accomplished AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "much better than a lot of human beings at the majority of jobs." He also addressed criticisms that large language models (LLMs) simply follow predefined patterns, comparing their learning process to the clinical method of observing, hypothesizing, and validating. These declarations have triggered debate, as they count on a broad and non-traditional definition of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs show exceptional flexibility, they might not fully fulfill this requirement. Notably, Kazemi's comments came soon after OpenAI eliminated "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the business's strategic intentions. [95]
Timescales
Progress in synthetic intelligence has actually traditionally gone through durations of fast development separated by periods when development appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software application or both to develop space for additional development. [82] [98] [99] For example, the hardware available in the twentieth century was not enough to carry out deep learning, which needs large numbers of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel says that quotes of the time required before a genuinely flexible AGI is constructed vary from 10 years to over a century. As of 2007 [upgrade], the agreement in the AGI research neighborhood appeared to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was possible. [103] Mainstream AI scientists have provided a large range of viewpoints on whether development will be this rapid. A 2012 meta-analysis of 95 such viewpoints found a predisposition towards forecasting that the beginning of AGI would happen within 16-26 years for modern and historical predictions alike. That paper has been slammed for how it classified viewpoints as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, significantly better than the second-best entry's rate of 26.3% (the traditional method used a weighted sum of scores from various pre-defined classifiers). [105] AlexNet was considered the initial ground-breaker of the current deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on openly offered and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds around to a six-year-old kid in first grade. A grownup comes to about 100 on average. Similar tests were carried out in 2014, with the IQ rating reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language design capable of performing many varied tasks without particular training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI asked for modifications to the chatbot to comply with their security guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in performing more than 600 various jobs. [110]
In 2023, Microsoft Research published a study on an early version of OpenAI's GPT-4, contending that it showed more general intelligence than previous AI models and demonstrated human-level performance in tasks covering several domains, such as mathematics, coding, and law. This research stimulated a debate on whether GPT-4 might be thought about an early, insufficient variation of synthetic general intelligence, emphasizing the need for additional exploration and assessment of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton stated that: [112]
The concept that this things might really get smarter than individuals - a couple of individuals thought that, [...] But many people thought it was method off. And I believed it was method off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis likewise stated that "The development in the last couple of years has been quite extraordinary", which he sees no reason why it would decrease, expecting AGI within a decade and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within five years, AI would can passing any test at least along with people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI staff member, approximated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is thought about the most promising course to AGI, [116] [117] whole brain emulation can work as an alternative technique. With whole brain simulation, a brain model is built by scanning and mapping a biological brain in detail, and after that copying and imitating it on a computer system or another computational device. The simulation design must be sufficiently faithful to the initial, so that it acts in almost the same way as the original brain. [118] Whole brain emulation is a type of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research functions. It has actually been talked about in artificial intelligence research [103] as a technique to strong AI. Neuroimaging technologies that might deliver the needed comprehensive understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of enough quality will appear on a comparable timescale to the computing power needed to emulate it.
Early approximates
For low-level brain simulation, an extremely powerful cluster of computers or GPUs would be needed, given the huge quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by their adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based upon a basic switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at different price quotes for the hardware required to equate to the human brain and adopted a figure of 1016 calculations per second (cps). [e] (For contrast, if a "calculation" was comparable to one "floating-point operation" - a procedure used to rate current supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, accomplished in 2011, while 1018 was achieved in 2022.) He used this figure to forecast the required hardware would be available at some point in between 2015 and 2025, if the rapid growth in computer system power at the time of writing continued.
Current research
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually developed an especially detailed and publicly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The artificial neuron model presumed by Kurzweil and used in lots of present artificial neural network executions is easy compared to biological neurons. A brain simulation would likely need to capture the comprehensive cellular behaviour of biological nerve cells, currently comprehended only in broad overview. The overhead presented by complete modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would need computational powers numerous orders of magnitude bigger than Kurzweil's estimate. In addition, the price quotes do not represent glial cells, which are understood to contribute in cognitive processes. [125]
An essential criticism of the simulated brain technique obtains from embodied cognition theory which asserts that human personification is a necessary element of human intelligence and is necessary to ground significance. [126] [127] If this theory is right, any fully functional brain model will need to incorporate more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an option, however it is unidentified whether this would suffice.
Philosophical perspective
"Strong AI" as defined in viewpoint
In 1980, philosopher John Searle created the term "strong AI" as part of his Chinese room argument. [128] He proposed a distinction between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness".
Weak AI hypothesis: A synthetic intelligence system can (only) act like it believes and has a mind and consciousness.
The very first one he called "strong" because it makes a more powerful declaration: it presumes something unique has happened to the machine that goes beyond those capabilities that we can check. The behaviour of a "weak AI" maker would be precisely similar to a "strong AI" maker, but the latter would likewise have subjective conscious experience. This use is also typical in scholastic AI research study and textbooks. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to mean "human level synthetic basic intelligence". [102] This is not the exact same as Searle's strong AI, unless it is presumed that awareness is necessary for human-level AGI. Academic theorists such as Searle do not think that holds true, and to most expert system researchers the question is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can behave as if it has a mind, then there is no need to know if it actually has mind - certainly, there would be no chance to tell. For AI research, Searle's "weak AI hypothesis" is comparable to the statement "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are 2 various things.
Consciousness
Consciousness can have different meanings, and some aspects play substantial roles in sci-fi and the ethics of artificial intelligence:
Sentience (or "sensational awareness"): The ability to "feel" perceptions or feelings subjectively, rather than the ability to factor about perceptions. Some philosophers, such as David Chalmers, use the term "consciousness" to refer solely to remarkable awareness, which is roughly equivalent to life. [132] Determining why and how subjective experience arises is known as the hard issue of awareness. [133] Thomas Nagel explained in 1974 that it "seems like" something to be conscious. If we are not conscious, then it does not feel like anything. Nagel uses the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had attained life, though this claim was widely challenged by other experts. [135]
Self-awareness: To have mindful awareness of oneself as a different individual, particularly to be consciously familiar with one's own thoughts. This is opposed to simply being the "subject of one's thought"-an operating system or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the very same method it represents everything else)-but this is not what people normally suggest when they utilize the term "self-awareness". [g]
These qualities have a moral dimension. AI life would give rise to issues of well-being and legal defense, likewise to animals. [136] Other aspects of consciousness related to cognitive abilities are likewise appropriate to the concept of AI rights. [137] Finding out how to incorporate advanced AI with existing legal and social frameworks is an emerging concern. [138]
Benefits
AGI could have a wide array of applications. If oriented towards such objectives, AGI might help alleviate different problems in the world such as hunger, poverty and health issue. [139]
AGI might improve efficiency and efficiency in a lot of tasks. For instance, in public health, AGI might speed up medical research study, significantly versus cancer. [140] It might look after the senior, [141] and equalize access to fast, high-quality medical diagnostics. It could use fun, low-cost and customized education. [141] The need to work to subsist could end up being obsolete if the wealth produced is appropriately rearranged. [141] [142] This also raises the question of the location of people in a radically automated society.
AGI could also help to make reasonable decisions, and to anticipate and prevent catastrophes. It could likewise help to profit of potentially disastrous technologies such as nanotechnology or climate engineering, while preventing the associated dangers. [143] If an AGI's primary objective is to avoid existential catastrophes such as human termination (which might be difficult if the Vulnerable World Hypothesis turns out to be true), [144] it could take measures to drastically minimize the threats [143] while decreasing the impact of these steps on our quality of life.
Risks
Existential dangers
AGI may represent numerous kinds of existential danger, which are risks that threaten "the early termination of Earth-originating intelligent life or the permanent and extreme destruction of its capacity for desirable future advancement". [145] The risk of human extinction from AGI has been the subject of many disputes, but there is also the possibility that the advancement of AGI would lead to a completely problematic future. Notably, it could be utilized to spread out and preserve the set of worths of whoever develops it. If humanity still has ethical blind spots similar to slavery in the past, AGI may irreversibly entrench it, preventing moral development. [146] Furthermore, AGI could help with mass surveillance and brainwashing, which could be utilized to develop a stable repressive worldwide totalitarian program. [147] [148] There is also a risk for the makers themselves. If machines that are sentient or otherwise deserving of moral factor to consider are mass produced in the future, participating in a civilizational course that indefinitely overlooks their welfare and interests might be an existential disaster. [149] [150] Considering just how much AGI could improve humanity's future and assistance lower other existential risks, Toby Ord calls these existential dangers "an argument for continuing with due caution", not for "abandoning AI". [147]
Risk of loss of control and human extinction
The thesis that AI presents an existential threat for human beings, which this risk needs more attention, is controversial but has been backed in 2023 by numerous public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed widespread indifference:
So, facing possible futures of incalculable advantages and dangers, the professionals are certainly doing everything possible to make sure the very best outcome, right? Wrong. If an exceptional alien civilisation sent us a message stating, 'We'll arrive in a couple of decades,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is taking place with AI. [153]
The potential fate of mankind has sometimes been compared to the fate of gorillas threatened by human activities. The contrast specifies that higher intelligence enabled humanity to control gorillas, which are now vulnerable in manner ins which they could not have actually anticipated. As a result, the gorilla has ended up being an endangered species, not out of malice, however merely as a collateral damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate mankind and that we ought to be mindful not to anthropomorphize them and analyze their intents as we would for people. He said that people won't be "smart adequate to create super-intelligent machines, yet ridiculously stupid to the point of giving it moronic objectives without any safeguards". [155] On the other side, the principle of crucial convergence suggests that practically whatever their objectives, smart representatives will have reasons to try to make it through and get more power as intermediary steps to accomplishing these objectives. And that this does not require having emotions. [156]
Many scholars who are concerned about existential risk supporter for more research into solving the "control problem" to address the question: what types of safeguards, algorithms, or architectures can developers execute to increase the likelihood that their recursively-improving AI would continue to act in a friendly, instead of damaging, manner after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which might cause a race to the bottom of security precautions in order to launch items before rivals), [159] and using AI in weapon systems. [160]
The thesis that AI can posture existential risk also has critics. Skeptics generally say that AGI is not likely in the short-term, or that concerns about AGI sidetrack from other issues connected to current AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for lots of people beyond the innovation industry, existing chatbots and LLMs are currently perceived as though they were AGI, resulting in further misunderstanding and worry. [162]
Skeptics often charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence replacing an illogical belief in an omnipotent God. [163] Some researchers believe that the communication projects on AI existential risk by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulatory capture and to pump up interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other industry leaders and scientists, provided a joint declaration asserting that "Mitigating the risk of termination from AI ought to be a worldwide priority together with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. labor force might have at least 10% of their work jobs affected by the intro of LLMs, while around 19% of workers might see at least 50% of their tasks impacted". [166] [167] They think about office workers to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, ability to make decisions, to interface with other computer system tools, but also to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the lifestyle will depend upon how the wealth will be redistributed: [142]
Everyone can delight in a life of luxurious leisure if the machine-produced wealth is shared, or the majority of people can end up miserably bad if the machine-owners effectively lobby versus wealth redistribution. Up until now, the pattern appears to be towards the second option, with technology driving ever-increasing inequality
Elon Musk thinks about that the automation of society will need governments to embrace a universal fundamental earnings. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain
AI effect
AI safety - Research area on making AI safe and advantageous
AI alignment - AI conformance to the intended goal
A.I. Rising - 2018 movie directed by Lazar Bodroža
Expert system
Automated artificial intelligence - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research initiative revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre
General video game playing - Ability of artificial intelligence to play different video games
Generative expert system - AI system capable of creating material in action to triggers
Human Brain Project - Scientific research study task
Intelligence amplification - Use of details technology to augment human intelligence (IA).
Machine principles - Moral behaviours of man-made makers.
Moravec's paradox.
Multi-task knowing - Solving multiple maker learning tasks at the exact same time.
Neural scaling law - Statistical law in artificial intelligence.
Outline of expert system - Overview of and topical guide to expert system.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or form of artificial intelligence.
Transfer knowing - Machine learning technique.
Loebner Prize - Annual AI competitors.
Hardware for artificial intelligence - Hardware specifically created and enhanced for expert system.
Weak expert system - Form of expert system.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the post Chinese room.
^ AI creator John McCarthy writes: "we can not yet define in basic what kinds of computational treatments we want to call intelligent. " [26] (For a conversation of some definitions of intelligence used by expert system scientists, see approach of artificial intelligence.).
^ The Lighthill report specifically slammed AI's "grandiose goals" and led the dismantling of AI research study in England. [55] In the U.S., DARPA became figured out to fund only "mission-oriented direct research study, instead of standard undirected research study". [56] [57] ^ As AI founder John McCarthy writes "it would be a great relief to the remainder of the employees in AI if the developers of brand-new general formalisms would express their hopes in a more secured type than has actually sometimes held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced.
^ As specified in a standard AI book: "The assertion that makers might perhaps act wisely (or, maybe much better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that makers that do so are really thinking (rather than imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to guarantee that artificial basic intelligence benefits all of mankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is producing artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were identified as being active in 2020.
^ a b c "AI timelines: What do experts in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton quits Google and cautions of danger ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can avoid the bad actors from utilizing it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The real danger is not AI itself however the method we deploy it.
^ "Impressed by expert system? Experts say AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential threats to humanity.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last development that mankind needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the danger of termination from AI must be an international top priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts alert of danger of extinction from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from developing machines that can outthink us in general methods.
^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no reason to fear AI as an existential risk.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "device intelligence with the complete variety of human intelligence.".
^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Artificial intelligence is changing our world - it is on everybody to make certain that it works out". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart qualities is based on the topics covered by significant AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reconsidered: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reevaluated: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a real kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar exam to AP Biology. Here's a list of challenging tests both AI variations have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013.
^ "AI Index: akropolistravel.com State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), priced estimate in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software application engineers avoided the term artificial intelligence for fear of being viewed as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who coined the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite development in device intelligence, artificial basic intelligence is still a significant challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not develop into a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us utopia or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future development in expert system: A survey of professional viewpoint. In Fundamental problems of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022.
^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022.
^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559.
^ Goertzel & Pennachin 2006.
^ a b c (Kurzweil 2005, p. 260).
^ a b c Goertzel 2007.
^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020.
^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190.
^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130.
^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as wise as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019.
^ Grossman, Gary (3 September 2020). "We're entering the AI golden zone in between narrow and basic AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are already seeing an early example of an AGI system in the recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is debatable, however the agreement is that it is not AGI. ... If absolutely nothing else, GPT-3 tells us there is a middle ground between narrow and basic AI.
^ Quach, Katyanna. "A designer built an AI chatbot using GPT-3 that helped a male speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021.
^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 jobs, from playing games to managing robots", TechCrunch, archived from the original on 16 June 2022, retrieved 12 June 2022.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL]
^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023.
^ Bove, Tristan. "A.I. might measure up to human intelligence in 'just a few years,' says CEO of Google's main A.I. research lab". Fortune. Retrieved 4 September 2024.
^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead".
^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to define Artificial General Intelligence". Fast Company.
^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024.
^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023.
^ Sandberg & Boström 2008.
^ Drachman 2005.
^ a b Russell & Norvig 2003.
^ Moravec 1988, p. 61.
^ Moravec 1998.
^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research job maps the human brain". euractiv.
^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014.
^ de Vega, Glenberg & Graesser 2008. A wide variety of views in present research, all of which require grounding to some degree
^ Thornton, Angela (26 June 2023). "How submitting our minds to a computer system might become possible". The Conversation. Retrieved 8 November 2023.
^ Searle 1980
^ For example: Russell & Norvig 2003,
Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),.
MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),.
Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947.
^ though see Explainable artificial intelligence for curiosity by the field about why a program acts the method it does.
^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review.
^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024.
^ Nagel 1974.
^ "The Google engineer who believes the company's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023.
^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024.
^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024.
^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal.
^ "Artificial General Intelligence - Do [es] the expense surpass benefits?". 23 August 2021. Retrieved 7 June 2023.
^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023.
^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023.
^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023.
^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, dangers, techniques (Reprinted with corrections 2017 ed.). Oxford, UK; New York, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2.
^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that human beings will destroy ourselves". Vox. Retrieved 8 June 2023.
^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security danger' to Australia, Senate questions says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023.
^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6.
^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9.
^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023.
^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023.
^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023.
^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023.
^ "Stephen Hawking: 'Transcendence takes a look at the implications of artificial intelligence - but are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014.
^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023.
^ "The interesting Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI". The fascinating Facebook dispute between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023.
^ "Will Expert System Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023.
^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to catastrophic AGI danger: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2.
^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023.
^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report alerts". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023.
^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger positioned however expert system can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023.
^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023.
^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015.
^ Titcomb, James (30 October 2023). "Big Tech is stiring worries over AI, caution scientists". The Telegraph. Retrieved 7 December 2023.
^ Davidson, John (30 October 2023). "Google Brain creator states huge tech is lying about AI termination danger". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023.
^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market effect potential of large language models". OpenAI. Retrieved 7 June 2023.
^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees might see their jobs impacted by AI. These are the jobs most affected". euronews. Retrieved 8 June 2023.
^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we need universal basic income because 'in the future, physical work will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023.
Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021.
Chalmers, David (1996 ), The Conscious Mind, Oxford University Press.
Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007.
Crevier, Daniel (1993 ). AI: The Tumultuous Look For Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3.
Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68.
Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114.
Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4.
Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013.
Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, obtained 1 April 2009.
Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, obtained 7 May 2011.
Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Perspective, archived from the initial on 17 August 2007, obtained 30 August 2007.
Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5.
Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press.
Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Expert System: a paper symposium, Science Research Council.
Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7.
McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The ultimate effort is to make computer system programs that can solve issues and achieve goals worldwide as well as human beings.
Moravec, Hans (1988 ), Mind Children, Harvard University Press
Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, retrieved 23 June 2006
Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, obtained 7 November 2009
Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022.
Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4
NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, obtained 29 September 2007
Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York: Oxford University Press, archived from the initial on 25 July 2009, retrieved 6 December 2007
Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2
Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, recovered 5 April 2009
Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, retrieved 3 September 2020
Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row
Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4
Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1
Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, recovered 4 September 2013 - by means of ResearchGate
Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, retrieved 31 August 2012
Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what might be called "Dyson's Law") that "Any system simple sufficient to be easy to understand will not be made complex enough to act smartly, while any system complicated enough to act smartly will be too complicated to understand." (p. 197.) Computer scientist Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead simple stupid. They work, however they work by strength." (p. 198.).
Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, obtained 25 July 2010.
Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from devices. For biological animals, factor and purpose originate from acting worldwide and experiencing the repercussions. Expert systems - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.).
Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013.
- Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably expect that those who hope to get abundant from AI are going to have the interests of the rest of us close at heart,' ... composes [Gary Marcus] 'We can't depend on federal governments driven by campaign finance contributions [from tech companies] to push back.' ... Marcus information the demands that citizens need to make of their governments and the tech business. They include openness on how AI systems work; payment for people if their information [are] used to train LLMs (large language design) s and the right to grant this use; and the capability to hold tech companies responsible for the harms they trigger by getting rid of Section 230, imposing money penalites, and passing stricter item liability laws ... Marcus likewise recommends ... that a brand-new, AI-specific federal firm, comparable to the FDA, the FCC, or the FTC, might provide the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... suggests ... establish [ing] a professional licensing regime for engineers that would function in a similar method to medical licenses, malpractice fits, and the Hippocratic oath in medicine. 'What if, like physicians,' she asks ..., 'AI engineers likewise promised to do no harm?'" (p. 46.).
Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653.
Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually puzzled humans for years, exposes the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has actually revealed that although NLP (natural-language processing) designs are capable of amazing tasks, their capabilities are extremely much restricted by the amount of context they get. This [...] could cause [difficulties] for scientists who hope to utilize them to do things such as examine ancient languages. In some cases, there are couple of historical records on long-gone civilizations to act as training data for such a purpose." (p. 82.).
Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to produce fake videos equivalent from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we indicate realistic videos produced using synthetic intelligence that in fact deceive people, then they barely exist. The fakes aren't deep, and the phony. [...] A.I.-generated videos are not, in basic, running in our media as counterfeited proof. Their function much better looks like that of animations, specifically smutty ones." (p. 59.).
- Leffer, Lauren, "The Risks of Trusting AI: We must prevent humanizing machine-learning designs used in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81.
Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a discussion?", The New Yorker, 7 October 2024, pp. 12-16.
Marcus, Gary, "Artificial Confidence: Even the newest, buzziest systems of artificial basic intelligence are stymmied by the very same old problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45.
McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009.
McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1.
Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, retrieved 29 September 2007.
Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill.
Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and dispersed at the 2007 Singularity Summit, San Francisco, California.
Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead cops to ignore inconsistent proof?", The New Yorker, 20 November 2023, pp. 20-26.
Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test however revealed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at jobs that require real humanlike thinking or an understanding of the physical and social world ... ChatGPT appeared not able to reason realistically and tried to rely on its vast database of ... realities derived from online texts. "
- Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are powerful however unreliable. Rules-based systems can not deal with situations their programmers did not prepare for. Learning systems are limited by the information on which they were trained. AI failures have actually already resulted in disaster. Advanced autopilot features in vehicles, although they perform well in some situations, have actually driven cars and trucks without cautioning into trucks, concrete barriers, and parked cars and trucks. In the wrong situation, AI systems go from supersmart to superdumb in an instant. When an opponent is attempting to control and hack an AI system, the risks are even greater." (p. 140.).
Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267.
- Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by brand-new technologies however depend on the timelelss human propensity to anthropomorphise." (p. 29.).
Williams, R. W.; Herrup, K.