Artificial General Intelligence

Přejít na: navigace, hledání


Artificial general intelligence (AGI) is a kind of artificial intelligence (AI) that matches or exceeds human cognitive abilities throughout a large range of cognitive tasks. This contrasts with narrow AI, which is limited to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably surpasses human cognitive abilities. AGI is thought about one of the definitions of strong AI.


Creating AGI is a main objective of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 survey determined 72 active AGI research study and advancement projects across 37 countries. [4]

The timeline for achieving AGI stays a subject of continuous debate among scientists and professionals. As of 2023, some argue that it might be possible in years or years; others maintain it might take a century or longer; a minority believe it might never be attained; and another minority declares that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has revealed concerns about the quick development towards AGI, recommending it might be achieved faster than numerous expect. [7]

There is dispute on the precise meaning of AGI and regarding whether modern-day big language models (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a common topic in sci-fi and futures research studies. [9] [10]

Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many professionals on AI have actually stated that alleviating the threat of human termination positioned by AGI must be an international top priority. [14] [15] Others discover the advancement of AGI to be too remote to present such a danger. [16] [17]

Terminology


AGI is likewise understood as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or general intelligent action. [21]

Some academic sources schedule the term "strong AI" for computer programs that experience sentience or consciousness. [a] In contrast, weak AI (or narrow AI) has the ability to resolve one specific issue but does not have basic cognitive abilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the very same sense as people. [a]

Related principles include artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical kind of AGI that is far more normally smart than human beings, [23] while the concept of transformative AI relates to AI having a big effect on society, for example, similar to the farming or industrial revolution. [24]

A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They define five levels of AGI: emerging, qualified, specialist, virtuoso, and superhuman. For example, a qualified AGI is specified as an AI that surpasses 50% of skilled grownups in a large range of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise specified however with a limit of 100%. They consider big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]

Characteristics


Various popular definitions of intelligence have actually been proposed. One of the leading proposals is the Turing test. However, there are other popular meanings, and some researchers disagree with the more popular methods. [b]

Intelligence characteristics


Researchers usually hold that intelligence is needed to do all of the following: [27]

reason, use strategy, resolve puzzles, and make judgments under uncertainty
represent knowledge, including good sense understanding
strategy
find out
- interact in natural language
- if essential, integrate these skills in conclusion of any offered goal


Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and decision making) think about additional traits such as creativity (the ability to form novel psychological images and ideas) [28] and autonomy. [29]

Computer-based systems that show much of these capabilities exist (e.g. see computational creativity, automated reasoning, choice support group, robot, evolutionary calculation, smart agent). There is debate about whether modern AI systems have them to an appropriate degree.


Physical characteristics


Other capabilities are considered preferable in intelligent systems, as they might affect intelligence or help in its expression. These consist of: [30]

- the capability to sense (e.g. see, hear, etc), and
- the ability to act (e.g. move and manipulate things, modification area to explore, and so on).


This includes the ability to detect and react to risk. [31]

Although the ability to sense (e.g. see, hear, etc) and the capability to act (e.g. move and control objects, modification location to check out, etc) can be desirable for some smart systems, [30] these physical abilities are not strictly required for an entity to certify as AGI-particularly under the thesis that big language models (LLMs) may already be or end up being AGI. Even from a less positive perspective on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system is enough, provided it can process input (language) from the external world in location of human senses. This interpretation lines up with the understanding that AGI has actually never ever been proscribed a specific physical embodiment and hence does not require a capacity for mobility or traditional "eyes and ears". [32]

Tests for human-level AGI


Several tests suggested to confirm human-level AGI have been considered, consisting of: [33] [34]

The concept of the test is that the device has to attempt and pretend to be a guy, by addressing concerns put to it, and it will only pass if the pretence is fairly persuading. A significant portion of a jury, who ought to not be skilled about makers, should be taken in by the pretence. [37]

AI-complete issues


An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to fix it, one would require to execute AGI, since the service is beyond the capabilities of a purpose-specific algorithm. [47]

There are lots of problems that have been conjectured to require general intelligence to fix as well as human beings. Examples consist of computer vision, natural language understanding, iuridictum.pecina.cz and dealing with unanticipated situations while solving any real-world issue. [48] Even a particular task like translation needs a device to read and compose in both languages, follow the author's argument (factor), understand the context (understanding), and faithfully recreate the author's initial intent (social intelligence). All of these issues require to be resolved concurrently in order to reach human-level maker efficiency.


However, numerous of these tasks can now be carried out by modern-day big language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on many standards for checking out comprehension and visual reasoning. [49]

History


Classical AI


Modern AI research study started in the mid-1950s. [50] The very first generation of AI researchers were persuaded that artificial general intelligence was possible which it would exist in simply a couple of decades. [51] AI pioneer Herbert A. Simon composed in 1965: "devices will be capable, within twenty years, of doing any work a guy can do." [52]

Their predictions were the motivation for and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers believed they might produce by the year 2001. AI leader Marvin Minsky was an expert [53] on the project of making HAL 9000 as sensible as possible according to the consensus forecasts of the time. He stated in 1967, "Within a generation ... the issue of producing 'synthetic intelligence' will considerably be resolved". [54]

Several classical AI tasks, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar project, were directed at AGI.


However, in the early 1970s, it became apparent that researchers had grossly ignored the difficulty of the task. Funding companies ended up being hesitant of AGI and put scientists under increasing pressure to produce helpful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI goals like "continue a table talk". [58] In action to this and the success of expert systems, both industry and federal government pumped cash into the field. [56] [59] However, self-confidence in AI stunningly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the second time in twenty years, AI researchers who anticipated the impending achievement of AGI had been misinterpreted. By the 1990s, AI scientists had a reputation for making vain pledges. They became reluctant to make forecasts at all [d] and prevented mention of "human level" expert system for fear of being labeled "wild-eyed dreamer [s]. [62]

Narrow AI research study


In the 1990s and early 21st century, mainstream AI achieved business success and scholastic respectability by concentrating on particular sub-problems where AI can produce verifiable results and commercial applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the technology industry, and research in this vein is greatly moneyed in both academia and market. Since 2018 [update], development in this field was considered an emerging pattern, and a mature stage was anticipated to be reached in more than ten years. [64]

At the millenium, lots of traditional AI researchers [65] hoped that strong AI might be established by integrating programs that fix various sub-problems. Hans Moravec composed in 1988:


I am positive that this bottom-up route to expert system will one day meet the traditional top-down route more than half method, all set to supply the real-world competence and the commonsense understanding that has been so frustratingly elusive in reasoning programs. Fully smart devices will result when the metaphorical golden spike is driven unifying the 2 efforts. [65]

However, even at the time, this was contested. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by specifying:


The expectation has actually typically been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper are valid, then this expectation is hopelessly modular and there is actually just one viable route from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we need to even try to reach such a level, since it looks as if arriving would simply total up to uprooting our symbols from their intrinsic meanings (thus simply lowering ourselves to the practical equivalent of a programmable computer). [66]

Modern artificial general intelligence research study


The term "artificial basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the capability to satisfy goals in a broad variety of environments". [68] This type of AGI, identified by the ability to maximise a mathematical meaning of intelligence rather than display human-like behaviour, [69] was likewise called universal synthetic intelligence. [70]

The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The very first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and featuring a number of guest lecturers.


As of 2023 [upgrade], a little number of computer system scientists are active in AGI research, and numerous contribute to a series of AGI conferences. However, significantly more researchers are interested in open-ended knowing, [76] [77] which is the idea of enabling AI to constantly discover and innovate like human beings do.


Feasibility


Since 2023, the development and prospective achievement of AGI remains a subject of intense argument within the AI community. While conventional consensus held that AGI was a remote goal, recent developments have led some scientists and industry figures to declare that early kinds of AGI might currently exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "makers will be capable, within twenty years, of doing any work a guy can do". This prediction stopped working to come real. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century because it would require "unforeseeable and fundamentally unpredictable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between modern-day computing and human-level expert system is as large as the gulf in between present area flight and useful faster-than-light spaceflight. [80]

A further obstacle is the absence of clarity in defining what intelligence involves. Does it require consciousness? Must it show the capability to set goals as well as pursue them? Is it simply a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are centers such as preparation, reasoning, and causal understanding needed? Does intelligence require clearly duplicating the brain and its specific faculties? Does it need feelings? [81]

Most AI scientists believe strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of achieving strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be accomplished, but that today level of development is such that a date can not accurately be anticipated. [84] AI specialists' views on the feasibility of AGI wax and subside. Four surveys conducted in 2012 and 2013 suggested that the average estimate amongst specialists for when they would be 50% positive AGI would get here was 2040 to 2050, depending on the poll, with the mean being 2081. Of the professionals, 16.5% answered with "never" when asked the very same concern but with a 90% confidence rather. [85] [86] Further existing AGI development considerations can be found above Tests for confirming human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong predisposition towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They analyzed 95 forecasts made between 1950 and 2012 on when human-level AI will happen. [87]

In 2023, Microsoft scientists published an in-depth examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it might fairly be considered as an early (yet still incomplete) variation of a synthetic general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 surpasses 99% of humans on the Torrance tests of creativity. [89] [90]

Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a significant level of basic intelligence has already been attained with frontier designs. They wrote that reluctance to this view originates from four main reasons: a "healthy uncertainty about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "commitment to human (or biological) exceptionalism", or a "issue about the economic implications of AGI". [91]

2023 likewise marked the introduction of big multimodal models (big language designs efficient in processing or generating several methods such as text, audio, and images). [92]

In 2024, OpenAI released o1-preview, the first of a series of designs that "spend more time thinking before they react". According to Mira Murati, this ability to think before responding represents a brand-new, extra paradigm. It enhances model outputs by spending more computing power when generating the answer, whereas the design scaling paradigm enhances outputs by increasing the design size, training information and training calculate power. [93] [94]

An OpenAI worker, Vahid Kazemi, claimed in 2024 that the company had achieved AGI, mentioning, "In my opinion, we have already achieved AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "better than the majority of people at the majority of tasks." He likewise resolved criticisms that big language designs (LLMs) simply follow predefined patterns, comparing their learning procedure to the clinical technique of observing, assuming, and verifying. These statements have sparked debate, as they count on a broad and unconventional definition of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs demonstrate impressive versatility, they may not completely fulfill this requirement. Notably, Kazemi's remarks came soon after OpenAI removed "AGI" from the regards to its partnership with Microsoft, prompting speculation about the company's tactical intents. [95]

Timescales


Progress in synthetic intelligence has traditionally gone through durations of rapid development separated by periods when development appeared to stop. [82] Ending each hiatus were essential advances in hardware, software or both to develop area for additional progress. [82] [98] [99] For instance, the hardware readily available in the twentieth century was not sufficient to carry out deep knowing, which requires big numbers of GPU-enabled CPUs. [100]

In the intro to his 2006 book, [101] Goertzel states that quotes of the time required before a genuinely versatile AGI is built vary from ten years to over a century. Since 2007 [update], the agreement in the AGI research community appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI researchers have actually offered a vast array of viewpoints on whether development will be this fast. A 2012 meta-analysis of 95 such opinions found a bias towards predicting that the onset of AGI would happen within 16-26 years for modern-day and historical predictions alike. That paper has actually been criticized for how it categorized opinions as professional or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, substantially better than the second-best entry's rate of 26.3% (the standard method used a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was considered as the preliminary ground-breaker of the existing deep learning wave. [105]

In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly available and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old child in very first grade. An adult concerns about 100 on average. Similar tests were performed in 2014, with the IQ rating reaching a maximum worth of 27. [106] [107]

In 2020, OpenAI established GPT-3, a language model efficient in performing numerous varied tasks without specific training. According to Gary Grossman in a VentureBeat post, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]

In the very same year, Jason Rohrer used his GPT-3 account to establish a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI asked for changes to the chatbot to abide by their safety guidelines; Rohrer detached Project December from the GPT-3 API. [109]

In 2022, DeepMind established Gato, a "general-purpose" system efficient in performing more than 600 different tasks. [110]

In 2023, Microsoft Research released a study on an early version of OpenAI's GPT-4, competing that it exhibited more general intelligence than previous AI models and demonstrated human-level performance in jobs covering numerous domains, such as mathematics, coding, and law. This research study triggered a dispute on whether GPT-4 could be thought about an early, insufficient version of synthetic general intelligence, highlighting the requirement for additional exploration and assessment of such systems. [111]

In 2023, the AI scientist Geoffrey Hinton specified that: [112]

The idea that this things might really get smarter than individuals - a couple of people thought that, [...] But many individuals thought it was method off. And I thought it was method off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer think that.


In May 2023, Demis Hassabis likewise stated that "The progress in the last couple of years has actually been pretty extraordinary", and that he sees no reason that it would slow down, expecting AGI within a years or perhaps a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within five years, AI would be capable of passing any test at least as well as human beings. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a former OpenAI worker, estimated AGI by 2027 to be "strikingly possible". [115]

Whole brain emulation


While the development of transformer models like in ChatGPT is thought about the most promising course to AGI, [116] [117] whole brain emulation can work as an alternative technique. With entire brain simulation, a brain design is constructed by scanning and mapping a biological brain in information, and then copying and imitating it on a computer system or another computational gadget. The simulation model must be adequately devoted to the initial, so that it acts in practically the very same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research purposes. It has actually been discussed in expert system research [103] as a method to strong AI. Neuroimaging technologies that might deliver the required detailed understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of enough quality will appear on a similar timescale to the computing power needed to imitate it.


Early approximates


For low-level brain simulation, a very effective cluster of computers or GPUs would be needed, offered the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, supporting by their adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based upon a basic switch design for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil looked at numerous quotes for the hardware needed to equal the human brain and adopted a figure of 1016 calculations per second (cps). [e] (For contrast, if a "calculation" was comparable to one "floating-point operation" - a step utilized to rate present supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, accomplished in 2011, while 1018 was achieved in 2022.) He used this figure to forecast the required hardware would be offered sometime in between 2015 and 2025, if the exponential development in computer power at the time of composing continued.


Current research study


The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has established a particularly comprehensive and publicly accessible atlas of the human brain. [124] In 2023, researchers from Duke University carried out a high-resolution scan of a mouse brain.


Criticisms of simulation-based methods


The artificial neuron design presumed by Kurzweil and utilized in lots of current synthetic neural network implementations is simple compared with biological nerve cells. A brain simulation would likely need to capture the comprehensive cellular behaviour of biological neurons, presently understood only in broad summary. The overhead introduced by complete modeling of the biological, chemical, and physical information of neural behaviour (particularly on a molecular scale) would require computational powers numerous orders of magnitude larger than Kurzweil's estimate. In addition, the price quotes do not represent glial cells, which are known to contribute in cognitive procedures. [125]

An essential criticism of the simulated brain approach stems from embodied cognition theory which asserts that human embodiment is an essential element of human intelligence and is necessary to ground meaning. [126] [127] If this theory is right, any totally practical brain model will need to include more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, however it is unknown whether this would suffice.


Philosophical perspective


"Strong AI" as specified in philosophy


In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference in between two hypotheses about artificial intelligence: [f]

Strong AI hypothesis: An expert system system can have "a mind" and "consciousness".
Weak AI hypothesis: A synthetic intelligence system can (just) imitate it believes and has a mind and consciousness.


The first one he called "strong" due to the fact that it makes a more powerful declaration: it assumes something special has taken place to the machine that exceeds those capabilities that we can check. The behaviour of a "weak AI" device would be precisely identical to a "strong AI" machine, however the latter would also have subjective conscious experience. This usage is also common in scholastic AI research and books. [129]

In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to indicate "human level synthetic general intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that consciousness is needed for human-level AGI. Academic thinkers such as Searle do not think that holds true, and to most expert system scientists the question is out-of-scope. [130]

Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to know if it in fact has mind - undoubtedly, there would be no way to tell. For AI research study, Searle's "weak AI hypothesis" is comparable to the declaration "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are 2 various things.


Consciousness


Consciousness can have numerous meanings, and some elements play substantial functions in science fiction and the ethics of expert system:


Sentience (or "phenomenal consciousness"): The ability to "feel" understandings or feelings subjectively, instead of the capability to factor about understandings. Some philosophers, such as David Chalmers, utilize the term "awareness" to refer solely to remarkable awareness, which is roughly equivalent to sentience. [132] Determining why and how subjective experience arises is called the hard problem of awareness. [133] Thomas Nagel explained in 1974 that it "seems like" something to be conscious. If we are not conscious, then it doesn't seem like anything. Nagel uses the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had actually accomplished sentience, though this claim was widely challenged by other specialists. [135]

Self-awareness: To have conscious awareness of oneself as a separate person, especially to be knowingly conscious of one's own thoughts. This is opposed to merely being the "subject of one's believed"-an os or debugger has the ability to be "conscious of itself" (that is, to represent itself in the same method it represents everything else)-however this is not what people normally suggest when they use the term "self-awareness". [g]

These traits have a moral measurement. AI life would generate issues of welfare and legal protection, similarly to animals. [136] Other aspects of awareness related to cognitive abilities are likewise relevant to the idea of AI rights. [137] Finding out how to integrate innovative AI with existing legal and social structures is an emerging issue. [138]

Benefits


AGI might have a variety of applications. If oriented towards such goals, AGI could help mitigate numerous issues on the planet such as appetite, hardship and health issue. [139]

AGI could improve efficiency and performance in the majority of jobs. For instance, in public health, AGI might speed up medical research study, notably against cancer. [140] It might look after the elderly, [141] and equalize access to quick, premium medical diagnostics. It could offer fun, low-cost and customized education. [141] The need to work to subsist might become outdated if the wealth produced is appropriately redistributed. [141] [142] This also raises the question of the location of humans in a radically automated society.


AGI might likewise help to make rational choices, and to expect and prevent catastrophes. It might also help to enjoy the benefits of possibly disastrous technologies such as nanotechnology or environment engineering, while avoiding the associated risks. [143] If an AGI's main objective is to avoid existential disasters such as human extinction (which could be difficult if the Vulnerable World Hypothesis turns out to be true), [144] it could take steps to drastically minimize the risks [143] while minimizing the impact of these procedures on our quality of life.


Risks


Existential threats


AGI might represent several kinds of existential threat, which are dangers that threaten "the premature extinction of Earth-originating intelligent life or the irreversible and drastic destruction of its capacity for desirable future advancement". [145] The risk of human extinction from AGI has been the subject of many disputes, however there is likewise the possibility that the development of AGI would result in a permanently flawed future. Notably, it might be used to spread out and maintain the set of worths of whoever develops it. If humankind still has ethical blind spots comparable to slavery in the past, AGI might irreversibly entrench it, avoiding moral progress. [146] Furthermore, AGI might help with mass monitoring and indoctrination, which could be used to develop a stable repressive around the world totalitarian program. [147] [148] There is likewise a danger for the devices themselves. If devices that are sentient or otherwise deserving of moral consideration are mass developed in the future, engaging in a civilizational course that forever disregards their welfare and interests could be an existential disaster. [149] [150] Considering just how much AGI could enhance humanity's future and help in reducing other existential risks, Toby Ord calls these existential dangers "an argument for proceeding with due care", not for "abandoning AI". [147]

Risk of loss of control and human extinction


The thesis that AI poses an existential threat for people, and that this risk requires more attention, is controversial but has actually been backed in 2023 by lots of public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking slammed widespread indifference:


So, facing possible futures of incalculable advantages and dangers, the professionals are undoubtedly doing everything possible to ensure the best outcome, right? Wrong. If an exceptional alien civilisation sent us a message stating, 'We'll show up in a couple of decades,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is taking place with AI. [153]

The prospective fate of mankind has in some cases been compared to the fate of gorillas threatened by human activities. The comparison mentions that greater intelligence permitted mankind to dominate gorillas, which are now susceptible in manner ins which they could not have actually anticipated. As an outcome, the gorilla has ended up being a threatened species, not out of malice, however just as a security damage from human activities. [154]

The skeptic Yann LeCun considers that AGIs will have no desire to control humankind and that we ought to beware not to anthropomorphize them and translate their intents as we would for humans. He said that individuals won't be "smart adequate to design super-intelligent makers, yet extremely foolish to the point of giving it moronic goals without any safeguards". [155] On the other side, the principle of critical merging suggests that almost whatever their goals, smart representatives will have factors to try to endure and obtain more power as intermediary steps to attaining these goals. And that this does not require having feelings. [156]

Many scholars who are worried about existential threat supporter for more research study into resolving the "control issue" to address the concern: what kinds of safeguards, algorithms, or architectures can developers implement to maximise the possibility that their recursively-improving AI would continue to behave in a friendly, instead of harmful, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which could lead to a race to the bottom of safety preventative measures in order to release items before rivals), [159] and making use of AI in weapon systems. [160]

The thesis that AI can posture existential threat likewise has detractors. Skeptics typically state that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other problems connected to current AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for lots of people outside of the technology market, existing chatbots and LLMs are already viewed as though they were AGI, resulting in further misconception and fear. [162]

Skeptics in some cases charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence replacing an unreasonable belief in an omnipotent God. [163] Some scientists think that the communication projects on AI existential danger by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulatory capture and to inflate interest in their items. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and researchers, provided a joint statement asserting that "Mitigating the threat of termination from AI must be a worldwide concern together with other societal-scale risks such as pandemics and nuclear war." [152]

Mass joblessness


Researchers from OpenAI estimated that "80% of the U.S. labor force might have at least 10% of their work jobs impacted by the introduction of LLMs, while around 19% of workers may see at least 50% of their jobs affected". [166] [167] They consider office workers to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, ability to make decisions, to user interface with other computer system tools, but likewise to manage robotized bodies.


According to Stephen Hawking, the outcome of automation on the quality of life will depend upon how the wealth will be redistributed: [142]

Everyone can enjoy a life of glamorous leisure if the machine-produced wealth is shared, or many people can wind up miserably bad if the machine-owners effectively lobby versus wealth redistribution. So far, the trend appears to be toward the second option, with innovation driving ever-increasing inequality


Elon Musk considers that the automation of society will require governments to adopt a universal basic income. [168]

See likewise


Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain
AI effect
AI security - Research location on making AI safe and beneficial
AI positioning - AI conformance to the intended goal
A.I. Rising - 2018 movie directed by Lazar Bodroža
Artificial intelligence
Automated artificial intelligence - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research effort announced by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre
General game playing - Ability of artificial intelligence to play different games
Generative expert system - AI system efficient in producing material in response to triggers
Human Brain Project - Scientific research study project
Intelligence amplification - Use of info innovation to enhance human intelligence (IA).
Machine ethics - Moral behaviours of manufactured devices.
Moravec's paradox.
Multi-task learning - Solving multiple maker discovering tasks at the same time.
Neural scaling law - Statistical law in maker learning.
Outline of expert system - Overview of and topical guide to expert system.
Transhumanism - Philosophical movement.
Synthetic intelligence - Alternate term for or form of expert system.
Transfer knowing - Machine learning strategy.
Loebner Prize - Annual AI competition.
Hardware for synthetic intelligence - Hardware specially created and enhanced for expert system.
Weak artificial intelligence - Form of artificial intelligence.


Notes


^ a b See listed below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the short article Chinese room.
^ AI founder John McCarthy composes: "we can not yet characterize in basic what kinds of computational procedures we desire to call intelligent. " [26] (For a discussion of some meanings of intelligence used by synthetic intelligence researchers, see philosophy of expert system.).
^ The Lighthill report particularly slammed AI's "grandiose objectives" and led the taking apart of AI research study in England. [55] In the U.S., DARPA became identified to fund only "mission-oriented direct research, rather than basic undirected research study". [56] [57] ^ As AI creator John McCarthy composes "it would be an excellent relief to the remainder of the workers in AI if the developers of new basic formalisms would reveal their hopes in a more safeguarded kind than has actually in some cases been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As defined in a standard AI book: "The assertion that machines could possibly act smartly (or, possibly much better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that machines that do so are actually thinking (as opposed to imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to ensure that artificial basic intelligence advantages all of mankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is creating artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were determined as being active in 2020.
^ a b c "AI timelines: What do professionals in artificial intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton quits Google and alerts of risk ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can prevent the bad stars from utilizing it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you alter changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The genuine threat is not AI itself however the way we deploy it.
^ "Impressed by expert system? Experts state AGI is coming next, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could pose existential dangers to humankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last creation that humanity requires to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of extinction from AI should be a global top priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals warn of risk of extinction from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating devices that can outthink us in general methods.
^ LeCun, Yann (June 2023). "AGI does not provide an existential danger". Medium. There is no factor to fear AI as an existential hazard.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "machine intelligence with the full series of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is transforming our world - it is on all of us to ensure that it works out". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart characteristics is based upon the topics covered by major AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reconsidered: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reconsidered: The principle of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a real young boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar examination to AP Biology. Here's a list of difficult examinations both AI variations have actually passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested evaluating an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software application engineers avoided the term expert system for worry of being seen as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of device intelligence: Despite progress in maker intelligence, artificial basic intelligence is still a major obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Expert system will not become a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general synthetic intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or damage?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A study of skilled opinion. In Fundamental concerns of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022.
^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022.
^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559.
^ Goertzel & Pennachin 2006.
^ a b c (Kurzweil 2005, p. 260).
^ a b c Goertzel 2007.
^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the initial on 4 December 2020. Retrieved 24 August 2020.
^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190.
^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130.
^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as wise as Siri - however a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019.
^ Grossman, Gary (3 September 2020). "We're going into the AI golden zone in between narrow and general AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are already seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, but the consensus is that it is not AGI. ... If absolutely nothing else, GPT-3 informs us there is a happy medium between narrow and general AI.
^ Quach, Katyanna. "A developer developed an AI chatbot utilizing GPT-3 that assisted a guy speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021.
^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can perform over 600 tasks, from playing games to managing robots", TechCrunch, archived from the initial on 16 June 2022, retrieved 12 June 2022.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL]
^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023.
^ Bove, Tristan. "A.I. could rival human intelligence in 'simply a couple of years,' states CEO of Google's main A.I. research lab". Fortune. Retrieved 4 September 2024.
^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI might pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead".
^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to specify Artificial General Intelligence". Fast Company.
^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024.
^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023.
^ Sandberg & Boström 2008.
^ Drachman 2005.
^ a b Russell & Norvig 2003.
^ Moravec 1988, p. 61.
^ Moravec 1998.
^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study task maps the human brain". euractiv.
^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014.
^ de Vega, Glenberg & Graesser 2008. A wide variety of views in present research study, all of which need grounding to some degree
^ Thornton, Angela (26 June 2023). "How submitting our minds to a computer system may become possible". The Conversation. Retrieved 8 November 2023.
^ Searle 1980
^ For instance: Russell & Norvig 2003,
Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (estimated in" Encyclopedia.com"),.
MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),.
Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.




^ a b c Russell & Norvig 2003, p. 947.
^ though see Explainable artificial intelligence for curiosity by the field about why a program acts the method it does.
^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review.
^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024.
^ Nagel 1974.
^ "The Google engineer who thinks the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023.
^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024.
^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024.
^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal.
^ "Artificial General Intelligence - Do [es] the expense surpass benefits?". 23 August 2021. Retrieved 7 June 2023.
^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023.
^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023.
^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023.
^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, threats, strategies (Reprinted with corrections 2017 ed.). Oxford, UK; New York, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2.
^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that humans will ruin ourselves". Vox. Retrieved 8 June 2023.
^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security threat' to Australia, Senate questions says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023.
^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6.
^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9.
^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023.
^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023.
^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023.
^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023.
^ "Stephen Hawking: 'Transcendence looks at the implications of expert system - but are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014.
^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023.
^ "The fascinating Facebook dispute between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI". The remarkable Facebook dispute between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI (in French). Retrieved 8 June 2023.
^ "Will Artificial Intelligence Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023.
^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI risk: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2.
^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023.
^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report alerts". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023.
^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard positioned however expert system can not be disregarded". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023.
^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023.
^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015.
^ Titcomb, James (30 October 2023). "Big Tech is stoking worries over AI, alert scientists". The Telegraph. Retrieved 7 December 2023.
^ Davidson, John (30 October 2023). "Google Brain founder states huge tech is lying about AI extinction danger". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023.
^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market effect potential of large language designs". OpenAI. Retrieved 7 June 2023.
^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of workers could see their jobs affected by AI. These are the jobs most affected". euronews. Retrieved 8 June 2023.
^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we require universal standard earnings since 'in the future, manual labor will be a choice'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023.
Sources


UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021.
Chalmers, David (1996 ), The Conscious Mind, Oxford University Press.
Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007.
Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3.
Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68.
Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114.
Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4.
Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013.
Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, retrieved 1 April 2009.
Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, retrieved 7 May 2011.
Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Point of view, archived from the initial on 17 August 2007, recovered 30 August 2007.
Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5.
Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press.
Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper seminar, Science Research Council.
Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7.
McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The ultimate effort is to make computer system programs that can resolve issues and attain goals in the world as well as humans.
Moravec, Hans (1988 ), Mind Children, Harvard University Press
Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, obtained 23 June 2006
Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, recovered 7 November 2009
Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022.
Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4
NRC (1999 ), "Developments in Expert System", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, retrieved 29 September 2007
Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York City: Oxford University Press, archived from the initial on 25 July 2009, retrieved 6 December 2007
Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2
Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, recovered 5 April 2009
Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, recovered 3 September 2020
Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row
Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.


de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4
Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.


Further reading


Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1
Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, retrieved 4 September 2013 - by means of ResearchGate
Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, retrieved 31 August 2012
Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what may be called "Dyson's Law") that "Any system simple adequate to be easy to understand will not be made complex enough to act intelligently, while any system complicated enough to behave smartly will be too complicated to understand." (p. 197.) Computer scientist Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead easy dumb. They work, but they work by strength." (p. 198.).
Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, retrieved 25 July 2010.
Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from makers. For biological creatures, reason and purpose come from acting worldwide and experiencing the repercussions. Expert systems - disembodied, strangers to blood, sweat, and tears - have no occasion for that." (p. 30.).
Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013.
- Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably expect that those who wish to get rich from AI are going to have the interests of the rest of us close at heart,' ... composes [Gary Marcus] 'We can't depend on governments driven by campaign financing contributions [from tech companies] to push back.' ... Marcus information the needs that people ought to make from their governments and the tech business. They consist of openness on how AI systems work; payment for people if their information [are] used to train LLMs (large language design) s and the right to grant this usage; and the ability to hold tech business accountable for the damages they trigger by getting rid of Section 230, imposing money penalites, and passing stricter item liability laws ... Marcus also suggests ... that a new, AI-specific federal agency, comparable to the FDA, the FCC, or the FTC, may offer the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... develop [ing] a professional licensing routine for engineers that would function in a comparable method to medical licenses, malpractice fits, and the Hippocratic oath in medicine. 'What if, like physicians,' she asks ..., 'AI engineers likewise pledged to do no harm?'" (p. 46.).
Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in synthetic intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653.
Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually puzzled people for years, reveals the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competition has actually exposed that although NLP (natural-language processing) designs are capable of incredible accomplishments, their abilities are quite restricted by the amount of context they receive. This [...] might trigger [troubles] for researchers who hope to utilize them to do things such as examine ancient languages. Sometimes, there are few historic records on long-gone civilizations to serve as training information for such a function." (p. 82.).
Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to create fake videos indistinguishable from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean sensible videos produced utilizing synthetic intelligence that actually trick individuals, then they barely exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in general, operating in our media as counterfeited proof. Their function better looks like that of animations, particularly smutty ones." (p. 59.).
- Leffer, Lauren, "The Risks of Trusting AI: We should prevent humanizing machine-learning designs used in scientific research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81.
Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a conversation?", The New Yorker, 7 October 2024, pp. 12-16.
Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of artificial general intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45.
McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009.
McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1.
Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, recovered 29 September 2007.
Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill.
Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, presented and distributed at the 2007 Singularity Summit, San Francisco, California.
Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead cops to overlook contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26.
Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but revealed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that require real humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared unable to factor realistically and tried to depend on its vast database of ... realities originated from online texts. "
- Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are powerful but undependable. Rules-based systems can not deal with circumstances their programmers did not prepare for. Learning systems are restricted by the data on which they were trained. AI failures have actually already resulted in tragedy. Advanced autopilot features in cars, although they carry out well in some situations, have actually driven cars without warning into trucks, concrete barriers, and parked cars. In the wrong situation, AI systems go from supersmart to superdumb in an instant. When an opponent is attempting to control and hack an AI system, the dangers are even greater." (p. 140.).
Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267.
- Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new technologies but rely on the timelelss human tendency to anthropomorphise." (p. 29.).
Williams, R. W.; Herrup, K.