Artificial General Intelligence
Artificial general intelligence (AGI) is a kind of synthetic intelligence (AI) that matches or exceeds human cognitive capabilities across a vast array of cognitive jobs. This contrasts with narrow AI, which is limited to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that greatly surpasses human cognitive abilities. AGI is considered one of the definitions of strong AI.
Creating AGI is a primary goal of AI research and of companies such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research and development projects across 37 countries. [4]
The timeline for accomplishing AGI stays a subject of ongoing dispute among researchers and professionals. Since 2023, some argue that it may be possible in years or decades; others keep it may take a century or longer; a minority believe it might never ever be attained; and another minority claims that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has revealed issues about the quick development towards AGI, suggesting it could be attained earlier than many expect. [7]
There is dispute on the specific definition of AGI and relating to whether contemporary large language models (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a typical subject in science fiction and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many experts on AI have specified that alleviating the risk of human termination positioned by AGI needs to be an international concern. [14] [15] Others find the advancement of AGI to be too remote to provide such a danger. [16] [17]
Terminology
AGI is likewise known as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, wiki.vst.hs-furtwangen.de or basic intelligent action. [21]
Some scholastic sources schedule the term "strong AI" for computer programs that experience life or awareness. [a] In contrast, weak AI (or narrow AI) has the ability to resolve one specific problem but does not have general cognitive abilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the very same sense as people. [a]
Related principles consist of artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical kind of AGI that is a lot more generally smart than people, [23] while the notion of transformative AI relates to AI having a large impact on society, for instance, comparable to the agricultural or industrial revolution. [24]
A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify five levels of AGI: emerging, proficient, specialist, virtuoso, and superhuman. For example, a proficient AGI is defined as an AI that exceeds 50% of knowledgeable grownups in a vast array of non-physical jobs, and a superhuman AGI (i.e. an artificial superintelligence) is similarly defined however with a threshold of 100%. They consider big language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have been proposed. One of the leading proposals is the Turing test. However, there are other widely known meanings, and some researchers disagree with the more popular approaches. [b]
Intelligence qualities
Researchers typically hold that intelligence is required to do all of the following: [27]
factor, usage method, fix puzzles, and make judgments under unpredictability
represent knowledge, consisting of sound judgment knowledge
strategy
learn
- communicate in natural language
- if necessary, integrate these abilities in completion of any offered goal
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and decision making) think about extra traits such as creativity (the ability to form unique mental images and ideas) [28] and autonomy. [29]
Computer-based systems that display numerous of these abilities exist (e.g. see computational creativity, automated reasoning, decision support group, robot, evolutionary calculation, intelligent representative). There is debate about whether contemporary AI systems possess them to a sufficient degree.
Physical qualities
Other capabilities are considered desirable in smart systems, as they may affect intelligence or help in its expression. These include: [30]
- the ability to sense (e.g. see, hear, etc), and
- the capability to act (e.g. move and control objects, change area to explore, and so on).
This consists of the ability to find and react to hazard. [31]
Although the ability to sense (e.g. see, hear, etc) and the capability to act (e.g. move and manipulate items, modification location to check out, and so on) can be preferable for some intelligent systems, [30] these physical abilities are not strictly required for an entity to certify as AGI-particularly under the thesis that large language models (LLMs) may currently be or end up being AGI. Even from a less optimistic viewpoint on LLMs, there is no company requirement for an AGI to have a human-like form; being a silicon-based computational system is sufficient, provided it can process input (language) from the external world in location of human senses. This interpretation lines up with the understanding that AGI has actually never been proscribed a particular physical embodiment and thus does not demand a capability for locomotion or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to confirm human-level AGI have actually been considered, consisting of: [33] [34]
The idea of the test is that the maker has to attempt and pretend to be a male, by addressing concerns put to it, and it will only pass if the pretence is fairly convincing. A substantial part of a jury, who should not be skilled about devices, should be taken in by the pretence. [37]
AI-complete problems
A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to fix it, one would need to implement AGI, due to the fact that the option is beyond the abilities of a purpose-specific algorithm. [47]
There are many issues that have been conjectured to require general intelligence to solve along with humans. Examples include computer system vision, natural language understanding, and handling unexpected situations while solving any real-world issue. [48] Even a particular job like translation needs a machine to read and write in both languages, follow the author's argument (factor), comprehend the context (understanding), and complexityzoo.net faithfully recreate the author's original intent (social intelligence). All of these problems need to be fixed simultaneously in order to reach human-level maker efficiency.
However, a number of these tasks can now be carried out by contemporary large language models. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on numerous criteria for reading understanding and visual reasoning. [49]
History
Classical AI
Modern AI research started in the mid-1950s. [50] The first generation of AI researchers were encouraged that synthetic basic intelligence was possible and that it would exist in simply a couple of years. [51] AI pioneer Herbert A. Simon wrote in 1965: "devices will be capable, within twenty years, of doing any work a guy can do." [52]
Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they could create by the year 2001. AI pioneer Marvin Minsky was an expert [53] on the task of making HAL 9000 as practical as possible according to the consensus forecasts of the time. He said in 1967, "Within a generation ... the issue of developing 'expert system' will significantly be solved". [54]
Several classical AI tasks, such as Doug Lenat's Cyc task (that began in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it ended up being obvious that scientists had actually grossly underestimated the trouble of the project. Funding agencies ended up being hesitant of AGI and put scientists under increasing pressure to produce helpful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI goals like "bring on a table talk". [58] In reaction to this and the success of expert systems, both industry and federal government pumped cash into the field. [56] [59] However, self-confidence in AI marvelously collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never fulfilled. [60] For the second time in 20 years, AI scientists who forecasted the impending achievement of AGI had been mistaken. By the 1990s, AI scientists had a reputation for making vain pledges. They ended up being hesitant to make predictions at all [d] and avoided reference of "human level" expert system for fear of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI attained business success and scholastic respectability by concentrating on specific sub-problems where AI can produce verifiable outcomes and commercial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized extensively throughout the technology industry, and research in this vein is greatly funded in both academia and market. As of 2018 [upgrade], development in this field was thought about an emerging pattern, and a fully grown phase was expected to be reached in more than 10 years. [64]
At the turn of the century, numerous traditional AI researchers [65] hoped that strong AI could be established by integrating programs that solve numerous sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up route to synthetic intelligence will one day fulfill the traditional top-down route more than half method, prepared to offer the real-world skills and the commonsense understanding that has actually been so frustratingly elusive in reasoning programs. Fully intelligent makers will result when the metaphorical golden spike is driven unifying the two efforts. [65]
However, even at the time, this was contested. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by specifying:
The expectation has frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is truly only one practical route from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we need to even attempt to reach such a level, because it appears getting there would simply amount to uprooting our symbols from their intrinsic significances (thereby merely lowering ourselves to the functional equivalent of a programmable computer system). [66]
Modern synthetic general intelligence research
The term "synthetic general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the implications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the capability to satisfy goals in a vast array of environments". [68] This type of AGI, identified by the ability to maximise a mathematical meaning of intelligence instead of show human-like behaviour, [69] was likewise called universal synthetic intelligence. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The first summer school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and featuring a variety of visitor lecturers.
As of 2023 [upgrade], a small number of computer system scientists are active in AGI research, and lots of add to a series of AGI conferences. However, progressively more scientists have an interest in open-ended knowing, [76] [77] which is the concept of permitting AI to continually learn and innovate like humans do.
Feasibility
Since 2023, the advancement and possible accomplishment of AGI remains a topic of intense dispute within the AI neighborhood. While standard agreement held that AGI was a distant objective, current advancements have led some scientists and market figures to claim that early types of AGI may currently exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that "machines will be capable, within twenty years, of doing any work a male can do". This prediction stopped working to come real. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century because it would need "unforeseeable and essentially unforeseeable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between contemporary computing and human-level expert system is as broad as the gulf between current area flight and practical faster-than-light spaceflight. [80]
An additional difficulty is the lack of clarity in specifying what intelligence requires. Does it require awareness? Must it display the ability to set goals in addition to pursue them? Is it simply a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are centers such as preparation, thinking, and causal understanding required? Does intelligence require clearly replicating the brain and its particular faculties? Does it need feelings? [81]
Most AI researchers think strong AI can be achieved in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of achieving strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be accomplished, but that today level of development is such that a date can not precisely be predicted. [84] AI professionals' views on the feasibility of AGI wax and wane. Four polls conducted in 2012 and 2013 suggested that the median price quote amongst professionals for when they would be 50% confident AGI would show up was 2040 to 2050, depending on the survey, with the mean being 2081. Of the experts, 16.5% responded to with "never ever" when asked the same question but with a 90% self-confidence instead. [85] [86] Further existing AGI progress considerations can be found above Tests for validating human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong bias towards predicting the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They evaluated 95 forecasts made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers published an in-depth evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, we believe that it might fairly be considered as an early (yet still incomplete) version of an artificial basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outperforms 99% of humans on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of general intelligence has actually already been achieved with frontier models. They wrote that reluctance to this view originates from four primary reasons: a "healthy suspicion about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "devotion to human (or biological) exceptionalism", or a "concern about the economic implications of AGI". [91]
2023 likewise marked the emergence of big multimodal models (large language designs efficient in processing or creating numerous techniques such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of models that "spend more time thinking before they respond". According to Mira Murati, this capability to think before responding represents a brand-new, additional paradigm. It improves model outputs by investing more computing power when generating the response, whereas the design scaling paradigm improves outputs by increasing the design size, training data and training compute power. [93] [94]
An OpenAI worker, Vahid Kazemi, declared in 2024 that the business had achieved AGI, stating, "In my opinion, we have already attained AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "better than many human beings at a lot of tasks." He likewise addressed criticisms that large language models (LLMs) simply follow predefined patterns, comparing their knowing procedure to the scientific technique of observing, assuming, and verifying. These declarations have actually sparked debate, as they count on a broad and unconventional meaning of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs demonstrate amazing flexibility, they may not completely meet this standard. Notably, Kazemi's remarks came quickly after OpenAI removed "AGI" from the regards to its partnership with Microsoft, prompting speculation about the business's tactical objectives. [95]
Timescales
Progress in artificial intelligence has actually historically gone through durations of fast progress separated by durations when progress appeared to stop. [82] Ending each hiatus were basic advances in hardware, software application or both to create space for further progress. [82] [98] [99] For instance, the hardware readily available in the twentieth century was not enough to implement deep learning, which needs big numbers of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that estimates of the time needed before a really flexible AGI is built differ from ten years to over a century. As of 2007 [upgrade], the agreement in the AGI research neighborhood seemed to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI scientists have offered a vast array of viewpoints on whether development will be this rapid. A 2012 meta-analysis of 95 such viewpoints discovered a bias towards predicting that the start of AGI would happen within 16-26 years for modern-day and historical forecasts alike. That paper has actually been criticized for how it categorized viewpoints as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, substantially better than the second-best entry's rate of 26.3% (the traditional method used a weighted amount of scores from various pre-defined classifiers). [105] AlexNet was considered the initial ground-breaker of the present deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly readily available and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds roughly to a six-year-old kid in very first grade. A grownup concerns about 100 typically. Similar tests were carried out in 2014, with the IQ rating reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language design efficient in performing many diverse tasks without particular training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the exact same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested modifications to the chatbot to abide by their safety guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in performing more than 600 different jobs. [110]
In 2023, Microsoft Research published a research study on an early version of OpenAI's GPT-4, contending that it exhibited more basic intelligence than previous AI models and showed human-level efficiency in jobs covering numerous domains, such as mathematics, coding, and law. This research sparked a dispute on whether GPT-4 could be thought about an early, insufficient variation of synthetic basic intelligence, stressing the requirement for further expedition and evaluation of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton stated that: [112]
The concept that this stuff might really get smarter than people - a few people believed that, [...] But many people believed it was way off. And I thought it was way off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis likewise stated that "The development in the last few years has been pretty extraordinary", and that he sees no reason it would slow down, anticipating AGI within a years or perhaps a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within five years, AI would be capable of passing any test a minimum of as well as human beings. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a former OpenAI staff member, estimated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the development of transformer designs like in ChatGPT is considered the most appealing path to AGI, [116] [117] entire brain emulation can act as an alternative method. With whole brain simulation, a brain design is built by scanning and mapping a biological brain in detail, and then copying and replicating it on a computer system or another computational device. The simulation model must be adequately loyal to the initial, so that it behaves in virtually the exact same way as the initial brain. [118] Whole brain emulation is a type of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research purposes. It has been discussed in expert system research study [103] as a method to strong AI. Neuroimaging innovations that might provide the essential in-depth understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of sufficient quality will appear on a similar timescale to the computing power required to emulate it.
Early approximates
For low-level brain simulation, a very effective cluster of computers or GPUs would be needed, given the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by the adult years. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based upon a simple switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at different price quotes for the hardware needed to equate to the human brain and embraced a figure of 1016 computations per 2nd (cps). [e] (For comparison, if a "calculation" was comparable to one "floating-point operation" - a procedure used to rate current supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, attained in 2011, while 1018 was accomplished in 2022.) He utilized this figure to anticipate the required hardware would be offered sometime between 2015 and 2025, if the exponential growth in computer system power at the time of composing continued.
Current research study
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has established an especially detailed and openly accessible atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based approaches
The artificial nerve cell design presumed by Kurzweil and utilized in lots of existing synthetic neural network applications is simple compared with biological neurons. A brain simulation would likely need to capture the in-depth cellular behaviour of biological nerve cells, currently comprehended just in broad summary. The overhead introduced by full modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would require computational powers several orders of magnitude larger than Kurzweil's price quote. In addition, the quotes do not represent glial cells, which are understood to play a role in cognitive processes. [125]
A basic criticism of the simulated brain approach originates from embodied cognition theory which asserts that human embodiment is an important element of human intelligence and is necessary to ground significance. [126] [127] If this theory is correct, any completely practical brain model will need to incorporate more than simply the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, but it is unknown whether this would be enough.
Philosophical perspective
"Strong AI" as defined in approach
In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness".
Weak AI hypothesis: A synthetic intelligence system can (only) imitate it believes and has a mind and awareness.
The first one he called "strong" due to the fact that it makes a stronger declaration: it assumes something special has actually happened to the device that surpasses those abilities that we can evaluate. The behaviour of a "weak AI" maker would be exactly identical to a "strong AI" machine, but the latter would also have subjective mindful experience. This use is likewise typical in academic AI research and textbooks. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to mean "human level synthetic basic intelligence". [102] This is not the very same as Searle's strong AI, unless it is presumed that consciousness is necessary for human-level AGI. Academic philosophers such as Searle do not think that holds true, and to most expert system scientists the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to know if it actually has mind - certainly, there would be no chance to inform. For AI research, Searle's "weak AI hypothesis" is comparable to the statement "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are 2 different things.
Consciousness
Consciousness can have numerous meanings, and some elements play considerable roles in science fiction and the principles of expert system:
Sentience (or "extraordinary awareness"): The capability to "feel" perceptions or emotions subjectively, as opposed to the ability to reason about understandings. Some philosophers, such as David Chalmers, utilize the term "awareness" to refer solely to incredible consciousness, which is roughly comparable to life. [132] Determining why and how subjective experience emerges is called the difficult issue of consciousness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be mindful. If we are not conscious, then it does not feel like anything. Nagel uses the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had accomplished sentience, though this claim was extensively contested by other experts. [135]
Self-awareness: To have conscious awareness of oneself as a different individual, especially to be knowingly aware of one's own ideas. This is opposed to just being the "subject of one's believed"-an os or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the very same method it represents whatever else)-but this is not what individuals normally mean when they use the term "self-awareness". [g]
These qualities have a moral measurement. AI sentience would offer increase to concerns of well-being and legal defense, likewise to animals. [136] Other elements of consciousness associated to cognitive abilities are likewise pertinent to the concept of AI rights. [137] Determining how to incorporate sophisticated AI with existing legal and social structures is an emerging problem. [138]
Benefits
AGI might have a variety of applications. If oriented towards such objectives, AGI could assist mitigate various issues worldwide such as appetite, hardship and health issue. [139]
AGI could improve efficiency and performance in many jobs. For example, in public health, AGI might accelerate medical research study, notably versus cancer. [140] It might look after the elderly, [141] and democratize access to quick, top quality medical diagnostics. It might use fun, low-cost and personalized education. [141] The need to work to subsist could become obsolete if the wealth produced is effectively rearranged. [141] [142] This also raises the concern of the location of humans in a radically automated society.
AGI might also assist to make rational decisions, and to prepare for and prevent catastrophes. It might likewise assist to profit of potentially catastrophic technologies such as nanotechnology or environment engineering, while preventing the associated risks. [143] If an AGI's primary goal is to avoid existential catastrophes such as human termination (which could be tough if the Vulnerable World Hypothesis ends up being true), [144] it might take procedures to drastically lower the risks [143] while lessening the impact of these steps on our lifestyle.
Risks
Existential threats
AGI may represent multiple types of existential risk, which are threats that threaten "the early extinction of Earth-originating smart life or the irreversible and drastic destruction of its capacity for preferable future development". [145] The risk of human extinction from AGI has been the subject of many arguments, but there is likewise the possibility that the development of AGI would lead to a permanently problematic future. Notably, it could be utilized to spread and preserve the set of values of whoever establishes it. If mankind still has moral blind areas comparable to slavery in the past, AGI may irreversibly entrench it, preventing moral development. [146] Furthermore, AGI could assist in mass surveillance and brainwashing, which could be used to create a steady repressive worldwide totalitarian routine. [147] [148] There is also a danger for the machines themselves. If machines that are sentient or otherwise worthwhile of ethical factor to consider are mass developed in the future, taking part in a civilizational course that indefinitely ignores their well-being and interests could be an existential catastrophe. [149] [150] Considering just how much AGI might improve mankind's future and help in reducing other existential threats, Toby Ord calls these existential threats "an argument for proceeding with due care", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI positions an existential danger for human beings, and that this threat requires more attention, is controversial but has been endorsed in 2023 by lots of public figures, AI researchers and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized extensive indifference:
So, facing possible futures of enormous benefits and dangers, the experts are surely doing everything possible to make sure the very best outcome, right? Wrong. If an exceptional alien civilisation sent us a message stating, 'We'll show up in a few decades,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is taking place with AI. [153]
The possible fate of humankind has sometimes been compared to the fate of gorillas threatened by human activities. The contrast specifies that greater intelligence enabled humankind to dominate gorillas, which are now vulnerable in manner ins which they could not have actually anticipated. As a result, the gorilla has ended up being an endangered types, not out of malice, but just as a security damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to control humankind which we ought to beware not to anthropomorphize them and interpret their intents as we would for people. He stated that people won't be "clever enough to create super-intelligent machines, yet unbelievably stupid to the point of providing it moronic goals with no safeguards". [155] On the other side, the concept of crucial merging suggests that almost whatever their objectives, smart representatives will have factors to try to make it through and obtain more power as intermediary actions to accomplishing these objectives. And that this does not need having feelings. [156]
Many scholars who are concerned about existential danger advocate for more research study into resolving the "control issue" to answer the concern: what kinds of safeguards, algorithms, or architectures can programmers execute to maximise the likelihood that their recursively-improving AI would continue to behave in a friendly, instead of devastating, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which could result in a race to the bottom of security preventative measures in order to launch items before rivals), [159] and making use of AI in weapon systems. [160]
The thesis that AI can present existential threat also has detractors. Skeptics typically say that AGI is unlikely in the short-term, or that concerns about AGI sidetrack from other issues related to existing AI. [161] Former Google fraud czar Shuman Ghosemajumder thinks about that for lots of individuals outside of the technology industry, existing chatbots and LLMs are already viewed as though they were AGI, resulting in additional misconception and worry. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence changing an irrational belief in a supreme God. [163] Some scientists believe that the communication projects on AI existential danger by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulative capture and to inflate interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other market leaders and scientists, released a joint declaration asserting that "Mitigating the risk of termination from AI must be an international concern together with other societal-scale risks such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI approximated that "80% of the U.S. workforce could have at least 10% of their work tasks impacted by the intro of LLMs, while around 19% of employees may see a minimum of 50% of their jobs impacted". [166] [167] They consider workplace employees to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI could have a much better autonomy, capability to make choices, to user interface with other computer tools, but likewise to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the quality of life will depend upon how the wealth will be rearranged: [142]
Everyone can take pleasure in a life of luxurious leisure if the machine-produced wealth is shared, or a lot of people can end up miserably poor if the machine-owners effectively lobby versus wealth redistribution. Up until now, the pattern appears to be toward the 2nd choice, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will need governments to embrace a universal basic earnings. [168]
See also
Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain
AI result
AI security - Research area on making AI safe and useful
AI alignment - AI conformance to the desired goal
A.I. Rising - 2018 film directed by Lazar Bodroža
Artificial intelligence
Automated artificial intelligence - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research study effort revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General video game playing - Ability of synthetic intelligence to play different video games
Generative artificial intelligence - AI system capable of producing material in action to triggers
Human Brain Project - Scientific research job
Intelligence amplification - Use of information technology to augment human intelligence (IA).
Machine principles - Moral behaviours of man-made devices.
Moravec's paradox.
Multi-task learning - Solving several maker learning jobs at the same time.
Neural scaling law - Statistical law in artificial intelligence.
Outline of expert system - Overview of and topical guide to artificial intelligence.
Transhumanism - Philosophical movement.
Synthetic intelligence - Alternate term for or kind of expert system.
Transfer learning - Machine knowing strategy.
Loebner Prize - Annual AI competition.
Hardware for artificial intelligence - Hardware specifically designed and enhanced for expert system.
Weak artificial intelligence - Form of expert system.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the post Chinese room.
^ AI creator John McCarthy composes: "we can not yet characterize in general what kinds of computational treatments we desire to call smart. " [26] (For a conversation of some definitions of intelligence utilized by expert system scientists, see viewpoint of synthetic intelligence.).
^ The Lighthill report specifically slammed AI's "grand objectives" and led the taking apart of AI research in England. [55] In the U.S., DARPA ended up being identified to fund only "mission-oriented direct research, rather than basic undirected research study". [56] [57] ^ As AI creator John McCarthy writes "it would be a great relief to the rest of the workers in AI if the inventors of brand-new general formalisms would express their hopes in a more safeguarded form than has actually sometimes held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil introduced.
^ As specified in a basic AI textbook: "The assertion that devices might perhaps act smartly (or, possibly much better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that makers that do so are really believing (as opposed to mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single task.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that synthetic basic intelligence benefits all of humankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is developing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were determined as being active in 2020.
^ a b c "AI timelines: What do experts in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton stops Google and cautions of risk ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can avoid the bad actors from utilizing it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals sparks of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change modifications you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The genuine danger is not AI itself but the way we release it.
^ "Impressed by synthetic intelligence? Experts say AGI is coming next, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could pose existential risks to mankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last invention that mankind requires to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the danger of termination from AI must be a global priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists alert of risk of termination from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from developing machines that can outthink us in general methods.
^ LeCun, Yann (June 2023). "AGI does not provide an existential danger". Medium. There is no factor to fear AI as an existential danger.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "device intelligence with the full series of human intelligence.".
^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is transforming our world - it is on everyone to make certain that it works out". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007.
^ This list of intelligent characteristics is based upon the topics covered by significant AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we believe: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reevaluated: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reevaluated: The idea of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine young boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar exam to AP Biology. Here's a list of challenging tests both AI variations have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer researchers and software application engineers avoided the term synthetic intelligence for worry of being viewed as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who coined the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of device intelligence: Despite development in machine intelligence, synthetic basic intelligence is still a major difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Expert system will not turn into a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why basic synthetic intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us paradise or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in artificial intelligence: A study of skilled viewpoint. In Fundamental concerns of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022.
^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022.
^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559.
^ Goertzel & Pennachin 2006.
^ a b c (Kurzweil 2005, p. 260).
^ a b c Goertzel 2007.
^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the initial on 4 December 2020. Retrieved 24 August 2020.
^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190.
^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130.
^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as clever as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019.
^ Grossman, Gary (3 September 2020). "We're entering the AI golden zone between narrow and basic AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are already seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, however the consensus is that it is not AGI. ... If absolutely nothing else, GPT-3 tells us there is a middle ground between narrow and basic AI.
^ Quach, Katyanna. "A developer developed an AI chatbot using GPT-3 that assisted a man speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021.
^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can carry out over 600 jobs, from playing games to managing robotics", TechCrunch, archived from the initial on 16 June 2022, retrieved 12 June 2022.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL]
^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023.
^ Bove, Tristan. "A.I. might equal human intelligence in 'simply a couple of years,' says CEO of Google's primary A.I. research laboratory". Fortune. Retrieved 4 September 2024.
^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead".
^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to specify Artificial General Intelligence". Fast Company.
^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024.
^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023.
^ Sandberg & Boström 2008.
^ Drachman 2005.
^ a b Russell & Norvig 2003.
^ Moravec 1988, p. 61.
^ Moravec 1998.
^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research project maps the human brain". euractiv.
^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014.
^ de Vega, Glenberg & Graesser 2008. A vast array of views in current research study, all of which require grounding to some degree
^ Thornton, Angela (26 June 2023). "How publishing our minds to a computer may end up being possible". The Conversation. Retrieved 8 November 2023.
^ Searle 1980
^ For instance: Russell & Norvig 2003,
Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),.
MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced estimate in "AITopics"),.
Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947.
^ though see Explainable expert system for interest by the field about why a program behaves the method it does.
^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review.
^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024.
^ Nagel 1974.
^ "The Google engineer who thinks the business's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023.
^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024.
^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024.
^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or forum.pinoo.com.tr Legal Rights?". The Wall Street Journal.
^ "Artificial General Intelligence - Do [es] the cost surpass benefits?". 23 August 2021. Retrieved 7 June 2023.
^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023.
^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023.
^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023.
^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, dangers, techniques (Reprinted with corrections 2017 ed.). Oxford, UK; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2.
^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that humans will ruin ourselves". Vox. Retrieved 8 June 2023.
^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security danger' to Australia, Senate query says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023.
^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6.
^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9.
^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023.
^ Samuelsson, Paul Conrad (2019 ). " Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023.
^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023.
^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023.
^ "Stephen Hawking: 'Transcendence looks at the implications of artificial intelligence - however are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014.
^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023.
^ "The interesting Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI". The interesting Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023.
^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023.
^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to catastrophic AGI threat: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2.
^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023.
^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report warns". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023.
^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger presented however synthetic intelligence can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023.
^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023.
^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015.
^ Titcomb, James (30 October 2023). "Big Tech is stoking fears over AI, caution researchers". The Telegraph. Retrieved 7 December 2023.
^ Davidson, John (30 October 2023). "Google Brain founder states big tech is lying about AI extinction risk". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023.
^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market impact capacity of large language models". OpenAI. Retrieved 7 June 2023.
^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees might see their tasks impacted by AI. These are the tasks most impacted". euronews. Retrieved 8 June 2023.
^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we need universal standard earnings because 'in the future, manual labor will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023.
Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021.
Chalmers, David (1996 ), The Conscious Mind, Oxford University Press.
Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007.
Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3.
Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68.
Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114.
Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4.
Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013.
Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, recovered 1 April 2009.
Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, obtained 7 May 2011.
Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Viewpoint, archived from the initial on 17 August 2007, recovered 30 August 2007.
Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5.
Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press.
Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Expert System: a paper symposium, Science Research Council.
Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7.
McCarthy, John (2007b). What is Expert system?. Stanford University. The ultimate effort is to make computer system programs that can resolve issues and accomplish objectives worldwide along with human beings.
Moravec, Hans (1988 ), Mind Children, Harvard University Press
Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, retrieved 23 June 2006
Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, retrieved 7 November 2009
Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: asteroidsathome.net Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022.
Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4
NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, obtained 29 September 2007
Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York City: Oxford University Press, archived from the initial on 25 July 2009, retrieved 6 December 2007
Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2
Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, recovered 5 April 2009
Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, retrieved 3 September 2020
Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row
Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4
Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1
Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, recovered 4 September 2013 - through ResearchGate
Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, retrieved 31 August 2012
Cukier, Kenneth, "Ready for Robots? How to Think about the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what may be called "Dyson's Law") that "Any system simple adequate to be reasonable will not be complicated enough to act wisely, while any system complicated enough to behave wisely will be too made complex to comprehend." (p. 197.) Computer researcher Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead simple foolish. They work, but they work by brute force." (p. 198.).
Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, obtained 25 July 2010.
Gleick, James, "The Fate of Free Will" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from machines. For biological creatures, reason and function come from acting on the planet and experiencing the effects. Artificial intelligences - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.).
Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013.
- Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who intend to get rich from AI are going to have the interests of the rest people close at heart,' ... writes [Gary Marcus] 'We can't rely on federal governments driven by project financing contributions [from tech business] to press back.' ... Marcus details the demands that citizens should make from their federal governments and the tech companies. They consist of transparency on how AI systems work; payment for people if their information [are] used to train LLMs (large language model) s and the right to grant this use; and the ability to hold tech business accountable for the damages they trigger by removing Section 230, imposing cash penalites, and wavedream.wiki passing stricter item liability laws ... Marcus also suggests ... that a new, AI-specific federal agency, akin to the FDA, the FCC, or the FTC, may provide the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... establish [ing] an expert licensing regime for engineers that would function in a comparable way to medical licenses, malpractice fits, forum.altaycoins.com and the Hippocratic oath in medication. 'What if, like physicians,' she asks ..., 'AI engineers also swore to do no damage?'" (p. 46.).
Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in synthetic intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653.
Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has stymied people for years, reveals the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has revealed that although NLP (natural-language processing) models can unbelievable feats, their abilities are quite restricted by the quantity of context they receive. This [...] might cause [troubles] for researchers who intend to use them to do things such as analyze ancient languages. In some cases, there are couple of historical records on long-gone civilizations to serve as training information for such a purpose." (p. 82.).
Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to create phony videos equivalent from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply sensible videos produced utilizing expert system that in fact deceive individuals, forum.batman.gainedge.org then they barely exist. The fakes aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in general, running in our media as counterfeited proof. Their role better resembles that of animations, especially smutty ones." (p. 59.).
- Leffer, Lauren, "The Risks of Trusting AI: We must avoid humanizing machine-learning models utilized in scientific research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81.
Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a discussion?", The New Yorker, 7 October 2024, pp. 12-16.
Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of artificial basic intelligence are stymmied by the same old problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45.
McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009.
McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1.
Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, obtained 29 September 2007.
Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill.
Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, presented and dispersed at the 2007 Singularity Summit, San Francisco, California.
Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead cops to ignore contradictory proof?", The New Yorker, 20 November 2023, pp. 20-26.
Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but revealed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at jobs that need real humanlike thinking or an understanding of the physical and social world ... ChatGPT appeared unable to factor rationally and tried to count on its vast database of ... facts derived from online texts. "
- Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are effective however unreliable. Rules-based systems can not deal with situations their developers did not anticipate. Learning systems are limited by the information on which they were trained. AI failures have actually currently caused tragedy. Advanced auto-pilot features in vehicles, although they perform well in some scenarios, have driven automobiles without cautioning into trucks, concrete barriers, and parked vehicles. In the incorrect situation, AI systems go from supersmart to superdumb in an instant. When an opponent is trying to control and hack an AI system, the dangers are even higher." (p. 140.).
Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267.
- Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new technologies however count on the timelelss human propensity to anthropomorphise." (p. 29.).
Williams, R. W.; Herrup, K.